The app is a complete free handbook of Artificial Intelligence with diagrams and graphs. It is part of Computer science or software engineering education which brings important topics, notes, news & blog on the subject. The App serves as a quick reference guide on this engineering subject.
It covers more than 600 topics of Artificial Intelligence, Automata, Real-time systems & Neuro fuzzy in detail. The topics are divided into 5 units.
Each topic is complete with diagrams, equations and other forms of graphical representations for better learning and quick understanding. The App will provide faster learning and quick revisions on the subject.
Few Additional subjects which have been included in the app are
Automata
Neural network fuzzy systems
Real-time Systems
Some of the topics Covered in this application are:
1. Turing test
2. Introduction to Artificial Intelligence
3. History of AI
4. The AI Cycle
5. Knowledge Representation
6. Typical AI problems
7. Limits of AI
8. Introduction to Agents
9. Agent Performance
10. Intelligent Agents
11. Structure Of Intelligent Agents
12. Types of agent program
13. Goal based Agents
14. Utility-based agents
15. Agents and environments
16. Agent architectures
17. Search for Solutions
18. State Spaces
19. Graph Searching
20. A Generic Searching Algorithm
21. Uninformed Search Strategies
22. Breadth-First Search
23. Heuristic Search
24. A∗ Search
25. Search Tree
26. Depth first Search
27. Properties of Depth First Search
28. Bi-directional search
29. Search Graphs
30. Informed Search Strategies
31. Methods of Informed Search
32. Greedy Search
33. Proof of Admissibility of A*
34. Properties of Heuristics
35. Iterative-Deepening A*
36. Other Memory limited heuristic search
37. N-Queens eample
38. Adversarial Search
39. Genetic Algorithms
40. Games
41. Optimal decisions in Games
42. minimax algorithm
43. Alpha Beta Pruning
44. Backtracking
45. Consistency Driven Techniques
46. Path Consistency (K-Consistency)
47. Look Ahead
48. Propositional Logic
49. Syntax of Propositional Calculus
50. Knowledge Representation and Reasoning
51. Propositional Logic Inference
52. Propositional Definite Clauses
53. Knowledge-Level Debugging
54. Rules of Inference
55. Soundness and Completeness
56. First Order Logic
57. Unification 58. Semantics
59. Herbrand Universe
60. Soundness, Completeness, Consistency, Satisfiability
61. Resolution
62. Herbrand Revisited
63. Proof as Search
64. Some Proof Strategies
65. Non-Monotonic Reasoning
66. Truth Maintenance Systems
67. Rule Based Systems
68. Pure Prolog
69. Forward chaining
70. backward Chaining
71. Choice between forward and backward chaining
72. AND/OR Trees
73. Hidden Markov Model
74. Bayesian networks
75. Learning Issues
76. Supervised Learning
77. Decision Trees
78. Knowledge Representation Formalisms
79. Semantic Networks
80. Inference in a Semantic Net
81. Extending Semantic Nets
82. Frames
83. Slots as Objects
84. Interpreting frames
85. Introduction to Planning
86. Problem Solving vs. Planning
87. Logic Based Planning
88. Planning Systems
89. Planning as Search
90. Situation-Space Planning Algorithms
91. Partial-Order Planning
92. Plan-Space Planning Algorithms
93. Interleaving vs. Non-Interleaving of Sub-Plan Steps
94. Simple Sock/Shoe Example
95. Probabilistic Reasoning
96. Review of Probability Theory
97. Semantics of Bayesian Networks
98. Introduction to Learning
99. Taxonomy of Learning Systems
100. Mathematical formulation of the inductive learning problem
AI is going to be one of the most important technologies in the coming days. It is a must have study for engineering, computer science, software engineering and other cognitive science students. It also going to be extremely important for mechanical, Automotive & electrical engineering students and Professionals.
Download the app for the introduction to AI and related technology.
应用程序是人工智能的一个完整的自由与手册图表和图形。它带来的重要课题,笔记,新闻和博客的主题计算机科学或软件工程教育的一部分。该应用程序作为这个工程学科的快速参考指南。
它涵盖了600多个主题人工智能,自动控制,实时系统和神经的细节模糊。的主题被分成5个单位。
每个主题都配有图表,方程式等形式更好地学习和快速了解图形表示的。该应用程序将提供更快的学习和关于这个问题的快速修正。
已被列入应用一些其他科目
自动机
神经网络模糊系统
实时系统
一些在此应用中讨论的主题有:
1.图灵测试
2.介绍人工智能
3. AI的历史
4. AI周期
5.知识表示
6.典型的AI问题
7. AI的限制
8.介绍代理
9.座席绩效
10.智能代理
11.结构智能代理
12.代理程序的类型
13.基于目标代理
14.基于效用的药剂
15.代理和环境
16.代理体系结构
17.搜索解决方案
18.国家空间
19.搜索图表
20.通用搜索算法
21.不知情搜索策略
22.广度优先搜索
23.启发式搜索
24.¢AAˆ–搜索
25.搜索树
26.深度优先搜索
27.深度优先搜索的性质
28.双向搜索
29.搜索图
30.知情搜索策略
知情搜索方法31.
32.贪婪搜索
33.证明的一个可容许的*
34.启发式的性质
35.迭代加深A *
36.其他内存有限启发式搜索
37. N皇后eample
38.对抗性搜索
39.遗传算法
40.游戏
在游戏41.最佳决策
42.极大极小算法
43.α+β修剪
44.回溯
45.一致性驱动技术
46.路径一致性(K-一致性)
47.前瞻
48.命题逻辑
命题演算的语法49。
50.知识表示和推理
51.命题逻辑推理
52.命题定条款
53.知识级调试
推理规则54.
55.可靠性和完备性
56.一阶逻辑
57.统一58.语义学
59. Herbrand宇宙
60.健全性,完整性,一致性,可满足
61.决议
62. Herbrand再访
63.作为证明搜索
64.一些证明策略
65.非单调推理
66.真值维护系统
67.基于规则的系统
68.纯的Prolog
69.正向推理
70.反向链接
正向和反向链接的71选
72.和/或树木
73.隐马尔可夫模型
74.贝叶斯网络
75.学习问题
76.监督学习
77.决策树
78.知识表示形式主义
79.语义网络
80.推理在语义网
81.扩展语义网
82.框架
83.插槽对象
84.解释框架
85.介绍规划
86.解决问题与规划
基于87.逻辑规划
88.规划系统
89.作为规划搜索
90.情景的空间规划算法
91.偏序规划
92.规划,空间规划算法
子计划步骤93.交织与非交织
94.简单的袜子/鞋为例
95.概率推理
96.回顾概率论
贝叶斯网络语义97
98.介绍学习
学习系统的99分类
100.归纳学习问题的数学公式化
AI将是在未来的日子中最重要的技术之一。它是工程学,计算机科学,软件工程等认知科学的学生必须具备的研究。这也将是机械,汽车及电气工程学生和专业人士极为重要。
下载的应用程序引进到AI和相关技术。